On a Quotient of the Unramified Iwasawa Module over an Abelian Number Field, Ii

نویسندگان

  • Humio Ichimura
  • HUMIO ICHIMURA
چکیده

Let p be an odd prime number, k an imaginary abelian field containing a primitive p-th root of unity, and k∞/k the cyclotomic Zp-extension. Denote by L/k∞ the maximal unramified pro–p abelian extension, and by L′ the maximal intermediate field of L/k∞ in which all prime divisors of k∞ over p split completely. Let N/k∞ (resp. N ′/k∞) be the pro–p abelian extension generated by all p-power roots of all units (resp. p-units) of k∞. In the previous paper, we proved that the Zp-torsion subgroup of the odd part of the Galois group Gal(N ∩ L/k∞) is isomorphic, over the group ring Zp[Gal(k/Q)], to a certain standard subquotient of the even part of the ideal class group of k∞. In this paper, we prove that the same holds also for the Galois group Gal(N ′∩L′/k∞).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Structure of Selmer Groups

Our objective in this paper is to prove a rather broad generalization of some classical theorems in Iwasawa theory. We begin by recalling two of those old results. The first is a theorem of Iwasawa, which we state in terms of Galois cohomology. Suppose that K is a totally real number field, that F is a totally complex quadratic extension of K, and that ψ is the nontrivial character of Gal(F/K),...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

Leopoldt’s Conjecture

The conjecture of Leopoldt states that the p adic regulator of a number field does not vanish. It was proved for the abelian case in 1967 by Brumer, using Baker theory. Let K be a galois extension of Q which contains the p−th roots of unity, K∞ be the cyclotomic Zp extension and H∞ the maximal p abelian unramified extension, ΩE ,ΩE′ the maximal p abelian extensions built by roots of units, resp...

متن کامل

On Galois Groups of Abelian Extensions over Maximal Cyclotomic Fields

Let k0 be a finite algebraic number field in a fixed algebraic closure Ω and ζn denote a primitive n-th root of unity ( n ≥ 1). Let k∞ be the maximal cyclotomic extension of k0, i.e. the field obtained by adjoining to k0 all ζn ( n = 1, 2, ...). Let M and L be the maximal abelian extension of k∞ and the maximal unramified abelian extension of k∞ respectively. The Galois groups Gal(M/k∞) and Gal...

متن کامل

On the equivariant Tamagawa number conjecture in tame CM-extensions, II

We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real elds with Galois group G, where K is a global number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. We attach to each nite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002